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Abstract. An extension of the Hubbard model, with two orbitals of different symmetry per site is studied.
When the two orbitals are hybridized by crystal field effects, the BCS approximation shows that the model
has an instability towards anisotropic superconductivity. The competition between superconductivity and
antiferromagnetism, and the relevance of other pairing mechanisms, like the Kohn-Luttinger instability,
are also analyzed.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 74.20.Mn Nonconventional mechanisms

1 Introduction

The emergence of superconductivity in systems of strongly
correlated electrons with only repulsive interactions is a
subject of extensive study. It was established, using the
formulation of the BCS theory, but computing higher or-
ders in the screened repulsive interaction, that the metal-
lic state is unstable towards anisotropic superconduc-
tivity, due to the angular dependence of the dielectric
constant [1]. This Kohn-Luttinger instability is greatly en-
hanced when the Fermi surface in anisotropic [2–4]. By us-
ing RPA or model dielectric functions, it can also be shown
that isotropic Fermi surfaces can give rise to anisotropic
superconductivity [5]. Nowadays, there is ample numerical
evidence suggests that models with purely repulsive inter-
actions can lead to anisotropic superconductivity [6–9].

An alternative scheme which leads to a superconduct-
ing ground state starting from models with repulsive in-
teractions was proposed in [10,11]. This model includes
an assisted hopping term which is a natural extension of
the Hubbard model when many non degenerate orbitals
per ion are considered. The consideration of a single or-
bital per site in the Hubbard model is justified when the
energies of other ionic states are much higher than the
conduction electron bandwidth, determined by the inter-
site hopping, and the onsite Coulomb repulsion. General
arguments, however, show that the typical intraionic level
spacing and the Coulomb repulsion are usually of the same
order of magnitude [10,11]. This assisted hopping term
strongly favors the existence of a superconducting ground
state [10–12]. In its standard version, this model leads to
isotropic superconductivity for small hole concentrations,
and for a moderate value of the onsite repulsion. The su-
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perconducting gap is finite throughout the entire Fermi
surface, although with a strong energy dependence.

We study in this work a simple variation of the
Hubbard model, which includes: i) Two non degenerate
orbitals of different symmetries per ion, ii) an intraionic
repulsion term, and, iii) an anisotropic distortion of the
crystal lattice, which leads to a weak hybridization of the
two ionic orbitals. In order to simplify the analysis, we
assume that the energy difference between the two ionic
levels is the largest parameter in the problem. If this pa-
rameter is strictly taken to be infinity, the model reduces
to the standard Hubbard model. Although the main fea-
tures of the model have been inspired by the phenomenol-
ogy of the cuprate superconductors, the model has been
simplified on purpose, so that the calculations can be car-
ried out analytically.

Following general arguments [10,11], we show that the
consideration of a second orbital leads naturally to as-
sisted hopping terms in an effective low energy Hamil-
tonian. The main difference with previous work is that
the induced superconductivity is anisotropic, and the gap
presents nodes at the Fermi surface. The existence of
anisotropic pairing, moreover, implies that superconduc-
tivity exists for arbitrary on site Hubbard repulsion, and
doping levels, at least within the BCS theory. Using the
similitude to the standard Hubbard model, we argue that
the only alternative phase antiferromagnetism. Then, we
analyze the competition between superconductivity and
antiferromagnetism, which prevails near half filling.

The next section presents the model, Then, we analyze
the main features of the superconducting solution, within
BCS theory. Section 4 discusses the phase diagram of the
model. Some concluding remarks, highlighting the most
general properties of the model are discussed in Section 5.
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2 The model

We assume a crystal with one atom per unit cell, in a two
dimensional square (tetragonal) lattice with a weak dis-
tortion, which destroys the equivalence of the two main
axes. It will be clear form the discussion, however, that
the main features of the calculated superconducting phase
can be easily generalized to similar situations. We assume
that this distortion is small, and we will treat its effects
as a perturbation. Using the tetragonal symmetry of the
undistorted lattice, we take the lowest lying orbital to be
dx2−y2 , and the second orbital to be s or d3z2−r2 . In the
following, we will denote these two orbitals s and d. We
define ∆ = εs − εd as the difference between the energy of
these levels. Without loss of generality, we set εd = 0. For
simplicity, we assume that there is only repulsion between
electrons in the more localized d orbital, U , although the
calculations can be easily extended to other types of on
site interactions. Hopping can take place only between
nearest neighbors, with amplitudes tss, tsd and tdd. Fi-
nally, the orthorhombic distortion implies that the crystal
field can induce an hybridization between the s and d in
the same site, VCF , which is forbidden in an orthogonal
lattice. The Hamiltonian is:

H = Hion + Htunn

Hion =
∑
σi

∆c†sσicsσi + Und↑ind↓i

+
∑
σi

VCF c†sσicdσi + h.c.

Htunn =
∑
ijσ

tddc
†
dσicdσj + tssc

†
sσicsσj

±tsdc
†
sσicdσj + h.c. (1)

We emphasize that this is a very simple extension of the
one band Hubbard model. We expect, however, that the
qualitative features of this solution can be generalized to
more complex models.

We are neglecting in equation (1) possible differences
between the hoppings in the two directions due to the
asymmetry of the lattice [19], which is included through
the crystal field potential VCF only. Note that, due to the
different symmetries of the two orbitals, the hopping be-
tween an s and a d orbital has opposite sign along the two
axes of the lattice (see Fig. 1). As discussed in the follow-
ing, this change of sign is crucial in stabilizing d-wave su-
perconductivity. In many metallic oxides the bandwidth,
determined by the hoppings which we take to be of simi-
lar order of magnitude, as there is no simple argument to
estimate their relative strength, |tdd| ∼ |tsd|. We assume
that the bandwidth is comparable to the Coulomb repul-
sion U , and to the spacing between the atomic levels ∆.
The crystal field splitting introduced here arises from the
existence of an orthorhombic distortion, and it can show
large variations in similar compounds.

In order to make possible an analytical treatment, we
assume that VCF � U, |tss|, |tsd|, |tdd| � ∆. As mentioned
above, there is no a priori justification for this inequality.
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Fig. 1. Sketch of the hopping terms between the two orbitals
in the unit cell.

Note, however, that a large separation between ionic lev-
els is an assumption required in order to derive any single
band model. In particular, the standard Hubbard model
can be obtained in the limit ∆ → ∞. In this regime, the
effects due to the second atomic orbital can be neglected.
In the following, we will use ∆−1 as an expansion parame-
ter, so that we analyze small deviations from the Hubbard
model.

The lowest lying eigenstates of the single ion Hamil-
tonian, Hion, for zero electrons, one electron with spin σ,
and double occupancy, can be approximated as:

|0〉 = |0〉
|1〉σ ≈

(
c†dσ +

VCF

∆
c†sσ

)
|0〉

|2〉 ≈ c†d↑c
†
d↓|0〉 +

VCF

∆ − U

(
c†d↑c

†
s↓ + c†s↑c

†
d↓

)
|0〉 (2)

with energies:

E0 = 0

E1 ≈ −V 2
CF

∆

E2 ≈ U − 2
V 2

CF

(∆ − U)
. (3)

Other ionic states lie at higher energies, the energy dif-
ference being of order ∆. In the limit ∆ → ∞, we can
truncate the number of possible electronic states to those
described in equation (2). The Hilbert space of the model
is equivalent to that of a system with a single orbital per
site, whose occupancy can be zero, one, or two. Hence, this
truncation defines a single band system, as in the standard
Hubbard model.

We can define an effective Hamiltonian using this re-
stricted basis, and neglect the matrix elements which in-
volve other states at higher energies, ∼ ∆. The only terms
which remain are a site diagonal contribution which gives
the renormalized one particle level, an effective hopping
term, and a renormalized on site repulsion. The hopping
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term, however, depends on the occupancy of the sites in-
volved in the process. States with different number of elec-
trons are described by different combinations of |s〉 and |d〉
orbitals (see Eq. (2)), so that the associated hoppings in-
volve different contributions from tdd and tss. After some
algebra, using equations (1) and (2), we obtain:

〈0i|〈1σj |Htunn|1σi〉|0j〉 ≈ tdd ± 2tsd
VCF

∆

〈1↑i|〈1↓j |Htunn|2i〉|0j〉 ≈ tdd ± tsd

(
VCF

∆
+

VCF

∆ − U

)

〈1σi|〈2j |Htunn||2i〉1σj〉 ≈ tdd ± 2tsd
VCF

∆ − U
. (4)

These matrix elements define the new hoppings. They in-
clude a correction to the initial value of tdd, due to transi-
tions involving intermediate states. In these processes, an
electron in a given d orbital jumps into a virtual state in
where in the s orbital of a neighboring site with amplitude
proportional to tsd, and then moves to the low energy d
orbital at that site via the hybridization provided by the
crystal field splitting, VCF . The energy difference associ-
ated to this virtual process is either ∆ or ∆−U , depend-
ing on the occupancy of the d orbital not involved in the
hopping. Hence, the generated hopping is proportional to
tsdVCF , and it depends on the occupancy of the sites. As
the sign of tds is different along the two axes of the lattice,
these corrections also are of opposite sign along the axes.
The final effective Hamiltonian can be written as:

Heff =
∑
σij

t̃±c̃†σic̃σj ± δt(ñσi + ñσj)c̃
†
−σic̃−σj + h.c.

+
∑

i

Ũ ñi↑ñj↓ (5)

where we have shifted the origin of energies by −V 2
CF /∆,

see equation (3). We define in equation (5):

c̃σi ≈ cdσi +
VCF

∆
csσi

t̃± ≈ tdd ± 2tsd
VCF

∆

δt̃ ≈ 2tsd
VCF U

∆2

Ũ ≈ U − 2
UV 2

CF

∆2
. (6)

As mentioned earlier, the effective Hamiltonian, equa-
tion (5), reduces to the standard Hubbard Hamiltonian
if the value of ∆ is taken to be strictly infinity.

Note that, as we are expanding to first order in VCF /∆,
we can neglect normalization terms in the definition of
the electron operators c̃σi. For the same reason, δt̃ has
the same absolute value along the two axes of the lattice.
The symmetries of the orbitals involved imply that, to first
order, there are no next nearest neighbor assisted hopping
terms.

3 Superconducting solution

We now study the properties of the normal state of the
effective Hamiltonian, equation (5), in mean field theory.
Replacing the operators ñσi by their average values, the
energy bands of the effective Hamiltonian are:

εkxky =
(
t̃+ +

n

2
δt̃

)
cos(kx) +

(
t̃− − n

2
δt̃

)
cos(ky) (7)

where n is the number of electrons in the unit cell.
The Hamiltonian in equation (5) has two terms which

describe electron-electron interactions, the onsite repul-
sion, and the assisted hopping. From them, we can write
an interaction term in momentum space [10]:

Vkxkyk′
xk′

y
=

{
Ũ

+δt̃
[
cos(kx) − cos(ky) + cos(k′

x) − cos(k′
y)

] }

× c̃†↑kxky
c̃†↓−kx−ky

c̃↑k′
xk′

y
c̃↓−k′

x−k′
y
. (8)

This pairing interaction allows us to define a self consis-
tent gap equation, within the BCS theory, in the usual
way. Because of the explicit dependence of the pairing in-
teraction on kx and ky it can easily be shown[10] that, if
there is a superconducting gap, ∆sc kxky , it must be of the
form:

∆sc kxky = a + b [cos(kx) − cos(ky)] . (9)

The superconducting gap is specified by the coefficients a
and b. Near the transition temperature, the gap equation
can be expanded in powers of the gap itself, and one ob-
tains an eigenvalue equation. The parametrization of the
gap given in equation (9) implies that this linearized equa-
tion near Tc can be written as a linear equation for the
coefficients a and b. This equation is [10]:

a = a
[
ŨI0 − δt̃(Ix − Iy)

]
+ b

[
Ũ(Ix − Iy)

+δt̃(Ixx − 2Ixy + Iyy)
]

b = aδt̃I0 − bδt̃(Ix − Iy) (10)

where:

I0 =
∫ εkxky <εF

kxky

n(εkxky/T )
εkxky − εF

Ix =
∫ εkxky <εF

kxky

cos(kx)n(εkxky/T )
εkxky − εF

Ixx =
∫ εkxky <εF

kxky

cos2(kx)n(εkxky/T )
εkxky − εF

(11)

and similar expressions for Iy, Ixy and Iyy. The function
n(ω/T ) is the Fermi-Dirac distribution, and εF is the
Fermi energy.

From equations (10), the critical temperature is
given by:

0 = 1 + ŨI0 − 2δt̃(Ix − Iy) + δt̃2
[
(Ix − Iy)2

−I0(Ixx − 2Ixy + Iyy)
]
. (12)
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As usual in BCS theory, the integrals in equations (11)
diverge as − log[(N(εF )T ] at low temperatures, where
N(εF ) ∼ t̃−1 is the density of states at the Fermi level, and
t̃ = (t̃+ + t̃−)/2. As we are assuming a weak orthorhombic
distortion, Ix ≈ Iy. Hence, the r.h.s. in equation (12) di-
verges as − log2[N(εF )T ] at low temperatures, and there is
always a solution. In the cases considered previously [10],
this log2 divergence in the gap equation is exactly can-
celled, due to the different symmetry of the gap. Then,
the counterpart of equation (9) has no solution for suffi-
ciently large values of the on site repulsion.

The critical temperature is given, approximately, by:

Tc ∼ c1t̃e
−(c2Ũ)/[N(εF )δt̃2] ∼ c′1te

−(c2∆4)/[t2N(εF )V 2
CF U ]

(13)
where we assume tdd ∼ tsd ∼ t. The coefficients c1

and c2 are numerical constants. The expression in equa-
tion (13) implies that the superconductivity is suppressed
as ∆ → ∞. It is enhanced by the the lattice asym-
metry, described by VCF , and by the existence of a fi-
nite U , as the assisted hopping term requires the pres-
ence of electron-electron interactions. Near half filling,
the van Hove singularity in the density of states implies
Tc ∝ te−c

√
λ, where λ = ∆4/(tV 2

CF U) [13–15]. The ex-
pression in equation (13) ceases to be valid near the band
edges, as Ixx − 2Ixy + Iyy → 0. It can be shown that, in
this limit:

lim
n→0

Ixx − 2Ixy + Iyy ∝ n (14)

where n is the number of carriers per unit cell. Then:

lim
n→0

Tc ∼ c′1te
−(c2∆4)/[ntV 2

CF U ] → 0. (15)

We can also calculate:

a

b
∼ δt̃3N2(εF )

UI0
∼ t3N2(εF )U2V 3

CF

∆6
(16)

so that a/b → 0 as ∆ becomes the largest energy in the
problem. In this limit, the gap, equation (9), will have
dx2−y2 symmetry.

The present calculation does not consider other mech-
anisms which can lead to a superconducting state. The
screened on site repulsion alone suffices to induce super-
conductivity, by means of the Kohn-Luttinger instabil-
ity [1]. Hence, it is interesting to compare the value in
equation (13) with the critical temperature predicted in
this case for the Hubbard model without assisted hop-
ping terms, TcKL. The effective coupling constant arises
from the screened interaction, and, to lowest order in U ,
it goes as U2N(εF ). Hence, TcKL ∼ d1te

−d2/(UN(εF )]2 .
Thus, within the perturbative approach used here, we
find Tc 	 TcKL, at least in the weak coupling regime,
UN(εF ) � 1.

4 Phase diagram

So far, we have only considered the superconducting in-
stability. Near half filling, it is well known that the Hub-

T

n

SC

AF

SC

1
Fig. 2. Sketch of expected phase diagram for the model de-
scribed by equation (1), see text for details. The present anal-
ysis is insufficient to characterize the intermediate regions
between the antiferromagnetic and superconducting phases,
shown shaded in the figure.

bard Hamiltonian in a bipartite lattice has nesting proper-
ties, and antiferromagnetism is favored. The correspond-
ing Néel temperature is proportional to the antiferromag-
netic gap, so that [16]:

TN ∼ b1te
−b2/

√
UN(εF ). (17)

As mentioned earlier, when VCF � ∆, the full Hamil-
tonian being considered here, equation (1), is reduced to
the Hubbard model. Near half filling, the superconduct-
ing temperature calculated in the previous section satisfies
Tc � TN , so that the system will be antiferromagnetic
instead of superconducting. As the doping is increased,
the Néel temperature is reduced, and the antiferomag-
netic phase disappears at densities, measured from half
filling, n∗ ∼ e−b2/

√
UN(εF ). It is likely that phase separa-

tion, or some kind of inhomogeneous order may take place
at these fillings [17,18]. Alternatively, Hartree-Fock stud-
ies of the Hubbard model suggest that an orthorhombic
distortion favors the formation of stripes [19]. The anal-
ysis presented here does not include the role of quantum
fluctuations beyond the mean field approximation. These
fluctuations will suppress the antiferromagnetic instabil-
ity. Higher order terms in VCF /∆, U/∆, not considered
here, will break the electron-hole symmetry shown in Fig-
ure 2 [10,11], and, in general, they will tend to reduce
the region where antiferromagnetism prevails. At densities
higher than n∗, the superconducting state discussed in the
previous section is most stable low temperature phase. It
is interesting to note that the lattice distortion considered
here can be due to an intrinsic electronic instability of the
Hubbard model in a square lattice [20].

A sketch of the expected phase diagram is shown in
Figure 2.
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5 Conclusions

We have studied an extension of the standard Hubbard
model, which includes, in a simple way, the effect of other
atomic levels.

As extensively discussed [10,11], virtual processes
which involve these levels induce an effective assisted hop-
ping term (see also [21]). The two atomic levels consid-
ered in the present work have different symmetry, and are
mixed by crystal field effects. This condition leads to a
change in the sign of the assisted hopping term along the
two crystallographic axes, which makes the model differ
from the previous cases where assisted hopping has been
discussed [10,11].

We have avoided the difficulties associated to inter-
mediate coupling situations by restricting the study to a
well defined weak coupling case, where the BCS theory is
valid (for a similar approach to another problem involving
assisted hopping, see [22]).

The main difference between our work and pre-
vious studies of Hamiltonians with assisted hopping
terms [10–12] is that the assisted hopping interaction is
not proportional to the non interacting hopping terms.
The assisted hopping interaction gives rise to a separable
kernel in the BCS equations, which fixes the form of the
possible gap at the Fermi surface. If the assisted hopping
is proportional to the hopping, this gap must be uniform
at the Fermi surface. A uniform gap is unfavorable in the
presence of strong electron-electron interactions, and the
superconductivity is suppressed. When the assisted hop-
ping is not proportional to the hopping, the supercon-
ducting gap is not uniform at the Fermi surface. Then,
solutions with changes of sign become possible, which
are stable even in the presence of a significant electron-
electron repulsion.

The existence of anisotropic superconductivity, in the
case studied here, is related to the induced assisted hop-
ping terms, which, in turn, are determined by the sym-
metries of the orbitals involved. Thus, the nature of the
superconducting phase is directly related to the orbitals
which form the bands. In more conventional models, the
existence of anisotropic superconductivity is related to
the shape of the Fermi surface (which can be highly
anisotropic, even if the orbitals involved are isotropic),
or to the anisotropies in the screened interaction, like in
the Kohn-Luttinger instability.

In the weak coupling regime, the value of the criti-
cal temperature arising from the assisted hopping term
tends to be larger than that due to the Kohn-Luttinger
mechanism. In addition, the BCS equations admit a su-
perconducting phase for arbitrary values of the doping,
and, within the limitations of the BCS method, for arbi-
trary values of the onsite repulsion.

The only low temperature phase which may prevail
over the superconducting state considered here is anti-
ferromagnetism near half filling. Thus, a combination of
weak coupling techniques give a qualitative understand-
ing of the model for the whole range of dopings. The model

analyzed here can be considered as an extension of the
ordinary Hubbard model. As, most likely, the dominant
instability of the Hubbard model away from half filling
is towards d-wave superconductivity, there is no competi-
tion with the pairing mechanism considered here. It seems
plausible that this enhancement will also take place in the
intermediate coupling regime. It would be interesting to
check this possibility using techniques valid in this regime.

Finally, the present results can be extended to other
systems where assisted hopping terms are likely to arise.
In quantum dots, where the sign of these terms can be
random [22], they can enhance the tendency towards local
pairing.
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17. F. Guinea, E. Louis, M.P. López-Sancho, J.A. Vergés, Solid

St. Commun. 113, 593 (2000)
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